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TIME SERIES, STATISTICS, AND INFORMATION

by

Emanuel Parzen1

Department of Statistics, Texas A&M University

Abstract

-./This paper is a broad survey of ideas for the future development of statistical meth-

ods of time series analysis based on investigating the many levels of relationships between

time series analysis, statistical methods unification, and inverse problems with positivity

constraints. It is hoped that developing these relations will: help integrate old and new

directions of research in time series analysis; provide research tools for applied and theo-

retical statisticians in the 1990's and coming era of statistical information; make possible

unification of statistical methods and the development of Statistical Culture. New results

include a new information divergence between spectral density functions. Topics discussed

include:

1) Traditional entropy and cross-entropy

2) Renyi and Chi-square information divergence)

3.) Comparison density functions'

4) Approximation of positive functions (density functions) by minimum information di-

vergence (maximum entropy);

5.) Equivalence and Orthogonality of Normal Time Series,

6) Asymptotic Information of Stationary Normal Time Series

7) Estimation of Finite Parameter Spectral Densities.

8) Minimum information estimation of spectral densities and power index correlations'

9) Tail classification of probability laws and spectral densities /q I

10) Sample Brownian Bridge exploratory analysis of time series.

'Preliminary version of paper to be presented at Workshop in New Directions in Time
Series Analysis at Institute for Mathematics and Its Applications, University of Minnesota
on July 16, 1990, a day dedicated to honor John Tukey's contributions to Time Series
Analysis. Research supported by U. S. Army Research Office.
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0. Introduction

The general level of the current relation (or non-relation) between statistics and time

series analysis is: (1) many applied statisticians are ignorant about the theory of time series

analysis, (2) many departments of statistics offer almost no courses in time series analysis

(often relying on courses taught in economics or engineering departments), (3) theoretical

statisticians traditionally have regarded time series analysis as safe to ignore because it is

a "technical" subject in which it is difficult to confront basic issues of statistical inference

which are the problems about which they want to do research.

Time series models are becoming of research interest to some theoretical statisticians

whose primary research areas involve statistical analysis of data obeying the classical model

of independent observations. They would like to investigate the extension of their work to

data obeying probability models of dependence. This relation of time series analysis and

statistics has a possibility of being superficial because it is completely methods-driven,

rather than problem-driven. Consequently it may not handle problems that are of real

interest to applied users of time series analysis. Questions of asymptotic rate of convergence

of parameter estimators are technical problems which fail to treat basic problems (such as

model identification and/or non-regular estimation for long-memory or non-Gaussian time

series) that are usually the central problems in a time series analysis.

I propose that the narrow reasons why statisticians should learn about the methods

of time series analysis (they are important for applications and many potential clients

have time series problems) should be supplemented by broad information age reasons;

the development of Statistical Culture requires that statisticians should learn about the

theory of time series because it will help them improve their mastery of the basic methods

of statistical analysis for traditional data consisting of independent observations. The

theory of time series analysis needs to become exoteric (beionging to the outer or less

initiate circle) as well as esoteric.

My concept of Statistical Culture (Parzen (1990)) proposes that a statistical analysis
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should aim to provide not a single answer but a choice of answers (answers by several

methods for the same problem). Therefore a framework for comparing answers is required.

A framework should also provide ways of thinking for classical problems that extends to as

many modern problems as possible. This paper discusses: the basic ideas of a unification

of statistical methods in terms of information concepts, the relation between time series

and statistics in terms of their relations with information statistics, a framework for time

series methods in terms of information concepts, and suggestions for research problems in

time series analysis. The references aim to include many influential papers on information

methods in statistics; additional references are warmly solicited.

An aim of this paper is to stimulate discussion of the mind-boggling discovery which

appears to be emerging in modern statistical research and which I call I. 0. U. (Information,

Optimization, Unification). It appears that one can find a common type of optimization

and approximation problem that provides a link among almost all classical and modern

statistical analysis problems! An inner product < f,g > is the integral of the product

fg. Let the information about an unknown NON-NEGATIVE function f be the values

of linear functionals which are inner products of f with specified score functions Jk: for

k= 1, ... M,

< f ,Jk >- rk

for specified constants rk called "moment parameters". Find a NON-NEGATIVE function,

denoted

f" or f^(rl, .. .,rm),

which among all functions satisfying the above constraints minimizes an information di-

vergence criterion (which includes as a special case maximum entropy). This problem is

called an inverse problem with positivity constraints.

We favor Renyi information criteria which imply that f^ has a representation fe: for
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suitable index A and parameters Ok (which we call inverse parameters)

(fki)/ E ZOkJk
k=1

The inverse ?arameters 0 are functions of the moment parameters and obtained by solving

< fh,Jk > = Irk.

Uncertainty (probability and statistics) enters the picture because one observes a raw

random function (denoted f-) or at least its inner products

< f-,Jk >=k,k=1,...,m.

One then seeks f^ which is non-negative and minimizes the specified information criterion

among all functions satisfying < f, k >= rk-,k = 1,...,m. Among new data analytic

tools that are open problems for research are "profile functions", defined as the minimum

value of the criterion as a function of the moment parameters.

The problems that need to be solved to apply the foregoing approach to unifying

statistical methods include

(1) introducing suitable density function d(u), 0 < u < 1, whose estimation underlies

conventional problems,

(2) determining sufficient statistics Jk(u) whose inner products with d(u) or dA(u) for

some power A, are regarded as most signficantly different from zero and therefore provide

the constraints on the unknown d,

(3) determining information measures whose index A provides a parameter formula

for d of the form dA(u) is a linear combination of known functions Jk(u) with coefficients

Ok to be estimated,

(4) developing and implementing algorithms to compute the solutions of the optimiza-

tion problems.

Other aspects of unification of time series analysis methods were discussed in Parzen

(1958), Parzen (1961), Parzen (1965), Parzen (1971), and Parzen (1974).
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1. Traditional Entropy and Cross-Entropy

The (Kullback-Liebler) information divergence between two probability distributions

F and G is defined (Kullback (1959)) by (our definitions differ from usual definitions by a

factor of 2)

J00
I(F; G) = (-2) log{g(x)/f(x)}f(x)dx

when F and G are continuous with probability density functions f(z) and g(x); when F and

G are discrete, with probability mass functions pF(x) and po(x), information divergence

is defined by

I(F; G) = (-2) 1 log{pG(x)WPF(x)}PF().

An information decomposition of information divergence is

I(F;G) = H(F;G) - H(F),

in terms of entropy H(F) and cross-entropy H(F; G):

H(F) = (-2) j{logf(x)}f(x)dx,

H(F;G) = (-2) f{logg(z)}f(x)dx.

2. Renyi and Chi Square Information

Adapting the fundamental work of Renyi (1961) this section offers a new definition of
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Renyi information of index A. For continuous F and G: for A $ 0, -1

IRA, (F; G) - A(1 + A) log f9 ( } 1 f(y)dy

-A(1+A) log / f g(y)dy

IRO(F;G) 2 ( y )  gY)

2 f g (y ) log g (Y )  g(Y) + 1

IRI(F; G) = -2 {log g'(Y) f (y)dy- 1 f(y)dy

-(2) f(y) + I f(y)dy

An analogous definition holds for discrete F and G.

The second definition provides: (1) extensions to non-negative functions which are not

densities, and also (2) a non-negative integrand which can provide diagnostic measures at

each value of y.

Renyi information, for -1 < A < 0, is equivalent to Bhattacharyya distance (Bat-

tacharyya (1943)).

In addition to Renyi information divergence (an extension of information statistics)

one uses as information divergence between two non-negative functions an extension of

chi-square statistics which has been developed by Read and Cressie (1988). For A # 0, -1,

Chi-square divergence of index A is defined for continuous F and G by

C (F; G) B (y) f(y)dy

where

BAX(d) =- 2iA {d(; - -d+1}

Bo(d) = 2{dlogd- d + 1}

B-l(d) = -2{logd- d + 1}
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Important properties of BA (d) are:

BA (d) 0, BA(1) = B' (1) = 0,

B1 (d) = (d - 1) , B"(d) = d1

Bj(d) =(d - 1)2

Bo(d) =2(d logd - d+ 1)

Bs(d) =4 (d.5 -1) 2

B- 1 (d) -- 2(logd- d +1)

B- 2 (d) d (d 1)2

An analogous definition holds for discrete F and G. Axiomatic derivations of information

measures similar to CA are given by Jones and Byrne (1990).

The Renyi information and chi-square divergence measures are related:

IRO (F; G) = Co (F; G)

1R_1 (F; G) = C_ 1(F; G)

For \ j4 o,-i1,

IRA (F; G)= 2A log{1 + (C(\+(F)CG)}

Interchange of F and G is provided by the Lemma:

CA (F; G) = C_ .(,+A) (G; F)

IRA (F; G) = IR_(1+\) (G; F)

Our survey in this paper suggests (in section 6) a new class of information measures:

AA (F; G) = fAA ( g() f (y)dyi

For A 0 0, - 1, perhaps most usefully - 1 < A < 0,

AA (d) = {2/A(l +A))}{(1 +A)log d-log1+ (1 +A) (d -1))}}
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Note A-I(F;G) = IR-I(F;G),

Ao(d) = 2 {log d- 1 + (1/d)} = (1/d)Bo(d).

3. Comparison Density Functions

Information divergence I(F; G) is a concept that works for both multivariate and

univariate distributions. This section shows that the univariate case is distinguished by

the fact that we are able to relate I(F; G) to the concept of comparison density d(u; F, G),

Quantile domain concepts introduced in Parzen (1979) play a central role; Q(u) =

F-l(u) is the quantile function. When F is continuous, we define the density quantile

function fQ (u) = f(Q(u)), score function J(u) = -(f Q(u))', and quantile density function

q(u) = 1/fQ(u) = Q'(U).

When F is discrete, we define fQ(u) = pF(Q(u)), q(u) = 1/f Q(u).

The comparison density d(u;F,G) is defined as follows: when F and G arc both

continuous,

d(u;F,G) = g(F-1 (u))/f(F-1 (u));

when F and G are both discrete

d(u : F, G) = pG(F-1(u))/PF(F-1 (u)).

In the continuous case d(u; F, G) is the derivative of

D(u;F,G) = G(F-I(u));

in the discrete case we define the comparison distribution function

D(u; F, G) = .d(t; F, G)dt.

Let F denote the true distribution function of a continuous random variable Y. To test

the goodness of fit hypothesis H0 : F = G, one transforms to W = G(Y) whose distribution
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function is F(G-(u)) and whose quantile function is G(F-1 (u)). The comparison density

d(u; F, G) and d(u; G, F) are respectively the quantile density and the probability density

of W.

For a density d(u), 0 < u < 1, Renyi information (of index A), denoted IRA(d), is non-

negative and measures the divergence of d(u) from uniform density do(u) = 1, 0 < u < 1.

It is defined:

IRo(d) = 2 {d(u)logd(u)}du = 2 {d(u)logd(u) -d(u) + 1}du

IR- 1 (d) = 2f {Iogd(u)}du = -2 {logd(u) - d(u) + 1}du

for A 5 0 or -1

IRA(d) {2/A(1 + A)}log {d(u)}1+Adu

= {2/A (1 + A)} log ({d(u)}1+ - (1 + A) {d(u) - 1i)du.

To relate comparison density to information divergence we use the concept of Renyi

information IR,\ which yields the important identity (and interpretation of I(F; G)!)

I(F;G) = (-2) log d(u; F, G)du

= IR_ 1 (d(u; F, G)) = IRO(d(u; G,f)).

For a density d(u), 0 < u < 1, define

CA(d) = BA(d(u))du.

The comparison density again unifies the continuous and discrete cases. One can show

that for univariate F and G

C\ (F, G) = CA(d(u; F, G))

4. Approximation of positive functions (density functions) by minimum infor-

mation divergence (maximum entropy)
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This section discusses how approximation theory provides models for comparison den-

sity functions. To a density d(u), 0 < u < 1, approximating functions are defined by

constraining (specifying) the inner product between d(u) and a specified function J(u),

called a score function. We often assume that the integral over (0,1) of J(u) is zero, and

the integral of J 2 (u) is finite. A score function J(u), 0 < u < 1, is always defined to have

the property that its inner product with d(u), denoted

[J,d = =J(u),d(u)I = jJ(u)d(u)du,

is finite. The inner product is called a component or linear detector; its value is a measure

of the difference between d(u) and 1.

The question of which distributions to choose as F and G is often resolved by the

following formula which evaluates the inner product between J(u) and d(u; F, G) as a

moment with respect to G if J(u) = (F-1(u)):

[ (F-'(u)) ,d(u;F,G)] = f 0(y)dG(y) = EG[p(Y)I

Often G is a raw sample distribution and F is a smooth distribution which is a modcl

for G according to the hypothesis being tested.

We propose that non-parametric statistical inference and density estimation can be

based on the same criterion functions used for parametric inference if one uses the minimum

Renyi information approach to density estimation (which extends the maximum entropy

approach); form functions dA,m(u) wl ich minimize IRA(d-(u)) among all functions d^(u)

satisfying the constraints

[Jk,di] = [Jk,d] for k = 1,...,m

where Jk(u) are specified score functions. One expects dA,m^(U) to converge to d(u) as m

tends to oo, and IR\(dA,m ) to non-decreasingly converge to IRA(d).

The case A = 1 provides approximations in L 2 norm which are based on a sequence

Jk(u), k = 1,2,..., which is a complete orthonormal set of functions. If d(u), 0 < u < 1,

10



is square integrable (equivalently, IR1 (d) is finite) one can represent d(u) as the limit of
m

dm(u) = 1 + Y[Jk,dIJk(u), m = 1,2.
k=1

When ok(y), k = 1,2,..., is complete orthonormal set for L 2 (F), a density g(y) can

be approximated by

gm(y) = f(Y) 1 + 1 EG [Vk(Y)] Vo(y)
I k=l

We call dmi(u) a truncated orthogonal function (generalized Fourier) series.

An important general method of density approximation, called a weighted orthogonal

function approximation, is to use suitable weights wk to form approximations
00

d*(u) = 1 + F Wk[Jk,d]Jk(u).
k=l

to d(u). Often wk depends on a "truncation point" m, and wk -- 1 as m -+ oo.

Quadratic Detectors. To test H0 : d(u) = 1, 0 < u < 1, many traditional goodness of

fit test statistics (such as Cramer-von Mises and Anderson-Darling) can be expressed as

quadratic detectors

Z {Wk [k, d]}2 = {d*(u)- }2du = C1(d*) =-I + exp IR(d*).
k=1

We propose that these nonadaptive test statistics should be expressed as information mea-

sures and compared with minimum Renyi information detectors IRN(dlmA); in this way

information can provide unification of statistical methods.

Maximum entropy approximators correspond to X = 0; do,m"(u) satisfies an exponen-

tial model (whose parameters are denoted 81,..., e)
m

log dom(u) = OkJk(u) - q(01,...,Om)
k=1

where T is the integrating factor that guarantees that do,m^(u), 0 < u < 1, integrates to

1:

11



The approximating functions formed in practice are not computed from the true com-

ponents [Jk,d] but from raw estimators [Jk,d'] for suitable raw estimators (u). The

approximating functions are interpreted as estimators of a true density. Methods proposed

for unification and generalization of statistical methods use minimum Renyi information

estimation techniques. Different applications of these methods differ mainly in how they

define the raw density d(u) which is the starting point of the data analysis.

5. Equivalence and Orthogonality of Normal Time Series

This section formulates in terms of Renyi information some classic results of the theory

of time series that should be part of the education of Ph.D.'s in statistics.

To apply Neyman Pearson statistical inference to a time series {Y(t),tET} with

abstract index set T, we must first define the probability density functional, denoted

p(Y(.); 0). We assume a family of probability models (for the time series) parametrized by

a possibly infinite dimensional parameter 0.

The model "Y(.) is normal with known covariance kernel K(s, t) = cov{Y(s), Y(t)}

and unknown mean value function m(t) = E[Y(t)]" is equivalent to a probabability mea-

sure Pm on the function space RT of all functions on T. We define p(Y(.); m) to be the

Radon-Nikodym derivative of Pm with respect to P0 , the probability measure correspond-

ing to m(t) = 0 for all t.

Theorem (Parzen (1958)): In order that Pm be absolutely continuous with respect to

P0 it is necessary and sufficient that m is in H(K), the reproducing kernel Hilbert space

of functions on T with reproducing kernel K and inner product between functions f and

g in H(K) denoted < f,g >H(K) and satisfying

< f,K(.,t) >H(K)= f(t)

for every f in H(K) and t in T.

The probability measures Pm and P0 of normal time series are either equivalent or

orthogonal; when they have the same covariance kernel K and mean value functions dif-
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fering by m they are orthogonal if and only if m1 MI I H(K) = oc, and they are equivalent if

and only if 11 mil H(K) is finite [which is equivalent to m is a member of H(K)] and

logp(Y(.);m) =< Ym >-H(K) -.5l Mil H(K)

The random variable < Y, m >~I(K) is a "congruence inner product" (Parzen (1970); it is

the linear combination of {Y(t), t in T} corresponding to m under the congruence which

maps K(-, t) into Y (t).

To compute the Renyi information of index A let o = 11 mll H(K), < Ym >~H(K)=

oz, where Z denotes a Normal (0,1) random variable. Then

IRA(Po, Pm) = {2/A(1 + A)} log Int,

where

Int = IRT {p(Y(.);m}l+AdPo

= E[exp{(1 + A)(aZ - .5o2)}1

= exp{.5(1 + A)2a 2 - .5(1 + A)o 2}

= exp{.5,\(1 +\)a 2}

Theorem: Renyi information of two common covariance normal time series:

IRA(Po; Pm) = ar2 = 11 il(2

This beautiful formula illustrates that our definition of Renyi information has been adjusted

to be equivalent to a chi-squared statistic.

Method of proof uses limits of information numbers: To prove results about equiva-

lence and orthogonality one studies the limit of information measures of finite dimensional

restrictions p(n) representing probability measures of Y(t), t in a finite set T() of points

in T converging monotonely to a set T(') dense in T. The norm of the restriction of m

to T(n), denoted 1 mll H(KT(n)), may be shown to converge to 11 M11 H(K). For a time
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series {Y(t), t in T} with abstract index set T, the finite dimensional Renyi information is

denoted

I R - IR A ( 0 M) 
I~ 

)

Theorem. General martingale theory can be used to show that

(1) Po and Pn are orthogonal if and only if IR(n) converges to oo as n increases,

(2) Pn is absolutely continuous with respect to Po if IR(n) has a finite limit as n increases.

Proposition: Renyi information divergence of two zero mean univariate normal dis-

tributions. Let P be the distribution on the real line corresponding to Normal (0, Kj)

with variance Kj. Let p(y) denote the probability density of P1 with respect to P2 . Let

Kv =L . Then
K1

p(y) = tv'exp {y2.(i K2

IR-1(P2 ;P1) = .- 1 - logr,

IRA(P2;Pl) = (1/X){logoc- (1 + X)- 1 logf{1 + (1 + A)(r + -

CA (P 2 ; P) = {2/A(1 + A)} .5(1+,) {1 +-(1 + A)(r.- 1)}i "

Asymptotic information can be computed from the fact (compare Hannan (1970), p.

429)

lim-ooll m11 H(KT(f))/Zm(t) = f ( ) dM(W )

where M(w) is the asymptotic spectral distribution function of m(-) assuming that m(.)

obeys Grenander's conditions, or is "persistently exciting" in the langt age of control en-

gineers (Bohlin (1971)): 1
PM (V) = 101 e 21riv~wdM(w),

where pm(v) is limit of sample autocorrelations of m(.).
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6. Asymptotic Information of Stationary Normal Time Series

This section discusses unification of information measures of stationary normal time

series and information measures of non-negative functions which are spectral density func-

tions.

When a time series {Y(t), t = 1,2,.. .} is modeled by probability measures which

are orthogonal over the infinite sequence but equivalent for any finite sample, we define

asymptotic information divergence (or rate of information divergence)

AsymIRA(P2; P1) = lim (1/n)IRA(P~n); phn).

Let Y (.) be zero mean normal stationary with covariance function

R(v) = E[Y(t)Y(t - v)].

The correlation function is defined

p(v) = R(v)/R(O).

We prefer to analyze the time series after first subtracting sample mean and dividing by

its sample standard deviation; its covariance function asymptotically equals p(v).

An important classification of time series is by memory type: no memory, short mem-

ory, long memory according as I, = 0, 0 < Ic, < oo, I, = oo where

100 = I(Y-Y-1, Y- 2 ,.) == Ey y...I(fYjYY_,_,...;fy)

is the information about Y(t) in Y(t - 1), Y(t - 2),..., its infinite past (see Parzen (1981),

(1983)).

Assume that Y(.) is short memory and satisfies
00

Z IR(v)l finite.

The spectral density function f(w), 0 < w < 1, is defined as the Fourier transform of

the correlation function:
00

f(w) = E exp(-2rivw)p(v)
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We call a time series bounded memory if the spectral density is bounded above and below:

0 < cl < f(W) !5 c2 < 00.

Let Pf denote the probability measure on the space of infinite sequences Roo cor-

responding to a normal zero mean stationary time series with spectral density function

f(w).

A result of Pinsker [(1964), p. 196] can be interpreted as providing a formula for

asymptotic information divergence between two zero mean stationary time series with

respective rational spectral density functions f(w) and g(w). Write AsymIR (f, g) for

AsymIR.(Pf; Pg). Adapting Pinsker (1964) one can prove that

AsymIR-l(f,g) = {(f( )/g(w)) - 1 - log(f(w)/g(w))} dw

The definition of Renyi information can be extended to non-negative functions d(u)

which do not necessarily integrate to 1. Because spectral densities are even functions we

take the integral to be over 0 < w < .5. One obtains the following important theorem.

Theorem: Unification of information measures of Pinsker (1964) and Itakura-Saito

(1970).

AsymIR-l(f,g)- IR_=(f(w)/g(w))o,.5

The validity of this information measure can be extended to non-normal asymptotically

stationary time series (Ephraim, Lev-Ari, Gray (1988)).

One can heuristically motivate Pinsker's information theoretic justification of the

Itakura-Saito distortion measure by the formula (at the end of section 5) for the infor-

mation divergence between two univariate normal distributions with zero means and dif-

ferent variances. Motivated by this formula we propose a formula for bounded memory

time series (whose proof is given by Kazakos and Kazakos (1980)) which motivates a new

distortion measure: AsymIR,(fg) -

(1/A)] {log(f(w)/g(w)) - (1/(1 + A)) log {1 + (1 + ')((f (w)/g(w)) - 1}+} dw
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The properties of the integrand are the same as those of BA (d).

Kazakos and Kazakos (1980) also give formulas for asymptotic information of multiple

stationary time series.

7. Estimation of Finite Parameter Spectral Densities

This section formulates in terms of Renyi information the classic asymptotic maximum

likelihood Whittle theory of spectral estimation.

For a random sample of a random variable with unknown probability density f, max-

imum likelihood estimators 0^ of the parameters of a finite parameter model fo of the

probability density f can be shown to be equivalent to minimizing

IR- (f, fo)

where f- is a raw estimator of f (initially, a symbolic sample probability density formed

from the sample distribution function F'). A similar result, called Whittle's estimator

(Whittle (1953)), holds for estimation of spectral densities of a bounded memory zero

mean stationary time series for which one assumes a finite parametric model f# (w) for the

true unknown spectral density f(w).

A raw fully nonparametric estimator of f(w) from a time series sample Y(t), t =

1,..., n, is the sample spectral density (or periodogram)
n n

f(w) = j Y(t) exp(-2riwt)12 + > jY(t)12

t=1 t=1

Note that f-(w) is not a consistent estimator of f(w); nevertheless,

E [f'(w)] converges to f(w),

a fact which can be taken as the definition of f(w).

An estimator 0^ which is asymptotically equivalent to maximum likelihood estimator

is obtained by minimizing AsymIR I(f-; fe) = IR- 1 (f-, fe)o,.5 =

f01 (f-(w)/fe(w)) - 1 - Iog(f-(w)/fe(w))) dw
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which can be interpreted as choosing 0 to make f()as flat or constant as possible.
fe ()

We usually use the representation

fe(w) =

where -10 (w) is the square modulus of the transfer function of the whitening filter repre-

sented by the spectral density model fe, constructed so that

j log f(w))dw =-log a

Minizimizing AsymIR_ 1 (f, fe) is equivalent to minimizing

(1/0,2) 10f rw~~) dw + log(a 2)

which is equivalent to minimizing over O

2 = f y (w)f-(w)dw

and setting

a = j a2d~fwd

The information divergence between the data and the fitted model is given

IR-(f,fe-) = logo - logor =l - Ioo0

defining -Io, o = logo .2 ,

= log a "2 = log f-(w) dw

This criterion (however, corrected for bias in Ioo-) arises from information approaches

to model identification (Parzen (1983)). A model fitting criterion (but not a parameter

estimation criterion) is provided by the information increment

I(YI all past Y; Y values in model 0)

f -log {f-(wj)If8j)} = IR-I U (IfO-)o,-.5
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One can regard it as a measure of the distance of the whitening spectral density

f*() = F(w)/feo(w)

from a constant function; note that f* (w) is constructed to integrate to 1. When one ac-

cepts that the optimal smoother of f* (w) is a constant, a "parameter-free" non-parametric

estimator of the spectral density f(w) by a smoother of f(w) is given by the parametric

estimator fo-. By "parameter-free" we mean that we are free to choose the parameters

to make the data (raw estimator) shape up to a smooth estimator. The parameters are

not regarded as having any significance or interpretation; they are merely coefficients of a

representation of f(w).

Portmanteau statistics to test goodness of fit of a model to the time series use sums

of squares of correlations of residuals; an analogous statistic is

IR1 (f/fo-)o,. 5 = log {r-(w)/fo_(w)} 2 dw

Goodness of fit of the model to the data (as measured by how close f* (w) is to the spectral

density of white noise) is the ultimate model identification criterion to decide between

competing parametric models.

8. Minimum information estimation of spectral densities

This section provides a perspective on maximum entropy spectral estimation from the

point of view of minimum Renyi information approximation.

The maximum entropy approach to the problem of spectral estimation of a stationary

time series was originated by Burg (1967). It derives a parametric model fe for the true f

by imposing constraints on linear functionals of f of the form: for v = 0, 1,..., m

p(v) =< exp(27rivw), f(w) >L2(0,1)= p_(v)

where p-(v) are estimators (from a sample) of autocorrelations. Note that the remarkable

properties of Burg's estimators derive from the fact that he first estimates in a novel

19



way the partial correlations and should not be interpreted as proof of the superiority of

maximum entropy philosophy.

Let f^r denote the function (among all functions f satisfying these constraints) which

minimizes the neg-entropy (of order -1)

IR-1(f)o,.5 = f- {log f(w)} dw

The solution f^m has the following parametric form:

{1/fro } is linear combination of exp(2,rivw), v = -m,..., m

The non-negativity of f^ then guarantees that f is an autoregressive spectral density:

m

f m (w) = j 11: a(j) exp(2 rijw)- 2

j=O

A negative opinion about applying autoregressive spectral estimates is expressed by

Diggle (1990), p. 112: "A final method, which we mention only briefly, is to fit an AR(p)

process to the data {yt} and to use the fitted autoregressive spectrum as the estimate of

f(w). The motivation for this is threefold: fitting an autoregressive process is computa-

tionally easy, autoregressive spectra can assume a wide variety of shapes, and automatic

criteria are available for choosing the value of p. Nevertheless, the method seems to fit

uneasily into a discussion of what is essentially a non-parametric estimation problem. It is

analogous to the use of polynomial regression for data smoothing, and is open to the same

basic objection, namely that it imposes global assumptions which can lead to artefacts in

the estimated spectrum."

If one's criterion is to minimize

IRo(f)o,.5 = J{f(w) log f(w)}dw,

the neg-entropy of order 0, the solution f obeys an exponential model (Bloomfield (1973)):

(log f } is linear combination of exp(2irivw), v = -m,..., m
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These optimization problems are related to the problem: subject to the constraints,

with specified score functions Jk(w),

< f, Jk >= specified constant for k = 1,...,

find a density f(w),O < w < 1, minimizing the LP norm, with p = 1 + A,

f {f(w)}'+A dw

Theorems about this problem are given by Chui, Deutsch, and Ward (1990).

Power correlations, inverse and cepstral correlations: Parametric models for the spec-

tral density f can be obtained from various maximum entropy criteria. To check which

model is parsimonious, one requires goodness of fit procedures which check the significant

difference from zero of the Fourier transforms of various functions of f such as 1/f, log f,

or fA.

Let eu(w) = exp(2rijw), and interpret inner products as L2 (0,1). Define:

inverse correlations

P(-1)(v)=< e, 1/f >

cepstral correlations

p(o)(v) =< e0,logf >

ordinary correlations

P(M(v)=< ev, f >

power correlations of power A

P(A)(v) =< eu, fA >

Identification of a parametric model for f should include routine estimation and interpre-

tation of these various correlations.

In general if one expands fA (w) as a linear combination of orthogonal functions Jk (u),

0 < w < 1, one forms the transform (called power orthogonal series coefficients)

,A)(k) = < ik, f2 >
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An open research problem is identification of appropriate orthogonal functions Jk(u),

0<w<1.

9. Tail Classification of Probability Laws and Spectral Densities.

This section discusses models for spectral density functions which are based on their

analogy with quantile density functions.

From extreme value theory, statisticians have long realized that it is useful to classify

distributions according to their tail behavior (behavior of F(x) as x tends to ±oo). It is

usual to distinguish three main types of distributions, called (1) limited, (2) exponential,

and (3) algebraic. Parzen (1979) proposes that this classification be expressed in terms of

the density quantile function fQ(u); we call the types short, medium, and long tail.

A reasonable assumption about the distributions that occur in practice is that their

density-quantile functions are regularly varying in the sense that there exist tail exponents

a0 and al such that, as u - 0,

fQ(u) = uOLo(u), fQ(1 -u) = uaLi (u)

where L,(u) for j = 0, 1 is a slowly varying function.

A function L(u), 0 < u < 1 is usually defined to be slowly varying as u -* 0 if, for

every y in 0 < y < 1, L(yu)/L(u) -- 1 or log L(yu) - log L(u) --+ 0. For estimation of tail

exponents we will require further that, as u --+ 0,

f 1(log L(uy) - log L(u)} dy -- 0

which we call integrally slowly varying. An example of a slowly varying function is L(u) =

{logu-} .

Classification of tail behavior of probability laws. A probability law has a left tail type

and a right tail type depending on the value of a0 and al. If a is the tail exponent, we
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define:

a < 0 super short tail

0 < a < 1 short tail

a = 1 medium tail

a > 1 long tail

Medium tailed distributions are further classified by the value of J - lim J(u):

a = 1, P = 0 medium long tail

s = 1,0 < J < 00 medium-medium tail

a = 1,J* = oo medium-short tail

One immediate insight into the meaing of tail behavior is provided by the hazard

function h(x) = f(x) + {1 - F(x)} with hazard quantile function hQ(u) = fQ(u) + 1 - u.

The convergence behavior of h(z) as x -* oo is the same as that of hQ(u) as u -* 1. From

the definitions one sees that h* = lim-.o h(x) satisfies

h* = oo(increasing hazard rate) Short or medium-short tail

0 < h* < oo(constant hazard rate) Medium-medium tail

h* - 0(decreasing hazard rate) Long or medium-long tail

Formulas for computing tail exponents. The representation of fQ(u) suggests a for-

mula for computation of tail exponents a O and a1 (which may be adapted to provide

estimators from data):

-ao = lim {log fQ(uy) - log fQ(u)} dy

a, = lim (log fQ(1 - yu) -log fQ(1 - u)}dy

Memory classification of spectral densities: Spectral densities with no poles or zeroes

represent time series with bounded memory. We regard spectral density functions as
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analogous to quantile density functions. A model for a spectral density with a pole or zero

at zero frequency (a similar representation holds for an arbitrary frequency wo) is (Parzen

(1986))

f (W)= c - 6L(w)

where L is a slowly varying function at w - 0 and L(0) > 0. An important role is played

by f(1/n) = n6 L(1/n).

The spectral density is integrable if 6 < 1, which is the condition for stationarity. The

spectral density of a non-stationary time series needs careful definition. The case 6 = 1

is of particular interest; it corresponds to "I/f" noise. The case 6 > 1 could be called

"fractal noise". A time series whose first difference is stationary has 6 - 2. Heuristically,

6 is interpreted for a zero mean time series Y(.) by

E [ Y(t)t2] grows as n6 L(1/n).
t=l

The index 6 associated with frequency w is interpreted:

E [1_ exp(2riwt)Y(t)j2 grows as n6 L(1/n),
t=1

and, when 6 = 0, converges to R(0) f(w) if it is finite.

This approach provides definitions of spectral density for asymptotically stationary

time series (Parzen (1962)).

Note that a finite dynamic range (bounded memory) spectral density has 6 = 0, but

6 = 0 does not imply finite dynamic range since f'(w) can tend to oo as w -+ 0; an example

is f (w) _ (log W)2 , p(V) - (log v)/ v as v -- o.

A traditional parametrization of stationary long memory time series is 6 = 2H - 1,

where H is the Hurst index satisfying .5 < H < 1; Hurst estimated H = .7 for the Nile

water level time series. The covariance function has the asymptotic representation

R(v) decays slowly like v2H - 2 = vb- 1.
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The memory index delta plays an important theoretical role. In many time series

theorems the asymptotic behavior of a statistic is expressed in terms of f(0), the value at

zero frequency of the spectral density function. These results often have analogies for long

memory time series if one replaces f(0) by f(1/n) = n6 asymptotically; compare Samarov

and Taqqu (1988).

Estimation of delta can be considered estimating a "fractal dimension", the exponent

of the rate of growth of the mean of the sample spectral density. Values of delta are used

to describe music and how the brain works! U. S. News and World Report, June 11, 1990,

p. 62 writes: "Surprisingly, the same mathematical formula that characterizes the ebb

and flow of music has been discovered to exist widely in nature, from the flow of the Nile

to the beating of the human heart to the wobbling of the earth's axis. Remarkably, this

equation is closely related to other mathematical formulas used by computer experts to

generate amazingly realistic pictures of coastlines, clouds and mountain ranges and other

natural scenery."

Estimating delta from data has many of the same difficulties as estimating the tail

index of a probability distribution. Since delta is a property of a long memory time series,

it undoubtedly can not be estimated with great accuracy from relatively short lengths of

observed time series.

We would appreciate references to research about delta, especially the conjectures in

this section.

10. Sample Brownian Bridge Exploratory analysis of time series.

To a time series sample {Y(t),t = 1,2,...,n} one can associate functions d-(u), 0 <

u < 1, and

D-(u) = jd(t)dt

satisfying D-(1) = 0. Let An and a, denote respectively the sample mean and sample
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standard deviation. Define, for j = 1,... ,n,

d-(u) = V/n(Y() An) Ia, < u J
n n

Note that for k= 1,...,n

D- (k) ;n Y(t) /An) /an
t=1

We call D-(.) the sample Brownian Bridge of an observed time series. We propose

that a time series analysis should routinely examine the graph of D'(u), 0 < u < 1; one

can show by examples that it provides graphical tools of identification of various types of

long memory time series.

Theorem: For a stationary time series with bounded memory

{D(u),o < u < 1} converges in distribution to {f'5(O)B(u),O < u < I I

where B(u), 0 < u < 1, is a Brownian Bridge stochastic process and f(0) is the spectral

density at zero frequency.

For long memory time series we would like to understand the asymptotic behavior of

{f(1/n)} - '5 D(u), 0 < u < 1.

Simulation and Time Series: Note that similar processes are studied by researchers

(Schruben, Iglehart) in operations research departments who study simulation methods of

forming confidence intervals for i, the true mean of Y(.); they standardize D-(u) by its

maximum minus its minimum.

Quality Control and Time Series: The process D-(.) also has applications to quality

control problems of identifying departures from the null hypothesis that Y (.) is white noise.

Components (linear functionals) of d'(.) are related to accumulation analysis methods of

Taguchi.
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